

Smart Contract Audit Report

Date of Audit: Oct 23, 2025​
Version: v1.1​
Audited by: Shahaf Antwarg, Liron Achdut​
Client: textile, inc.​
Repository: https://github.com/textile-protocol/textile-monorepo
Frozen Hash: 1bb98a06bdb5ebc9b2f1e786b9900c45cdc59469​
Contracts Reviewed:
textile-protocol/textile-monorepo/tree/dev/packages/protocol/contracts/v2.1

 1 / 37 ​ ​ ​ ​ ​ ​ ​ ​ <node/>.security

https://github.com/textile-protocol/textile-monorepo/tree/main/packages/protocol
https://github.com/textile-protocol/textile-monorepo/tree/dev/packages/protocol/contracts/v2.1

Report Properties

Client textile, inc.

Version v2.1

Contracts packages/protocol/contracts/v2.1

Author Shahaf Antwarg, Liron Achdut

Auditors Shahaf Antwarg, Liron Achdut

Classification Confidential

Version Info

Version Commit Date Author Description

v1.0 1bb98a06bdb5eb
c9b2f1e786b990
0c45cdc59469

25.10.2025 bnolens Release Candidate

v1.1 3847255235ea1a
e8d6f73e7fb9961
2d4f8ce4c61

17.12.2025 bnolens Final Release

Deployments

Contract Chain Address Date

 2 / 37 ​ ​ ​ ​ ​ ​ ​ ​ <node/>.security

Table of Contents

1. Introduction___ 5
1.1 About Textile__ 5
1.2 About node.security__ 5
1.3 Disclaimer__ 5

2. Report Structure___ 6
2.1 Issue tags__ 6
2.2 Severity levels___ 6
2.3 Vulnerability Categories___ 7

3. Scope of Work___8
4. Methodology__ 8
5. Findings__9

C-01: Missing Checkpoint Update for Non-Compounding LPs Minting______________11
C-02: Missing Checkpoint Update for Receiving Non-Compounding LPs___________ 12
C-03: Missing Burning of Shares on Auto-Claiming____________________________ 13
H-01: Claiming of Interest with 0 Shares Burnt________________________________ 14
H-02: Non-Compounding Interest Calculation Error____________________________ 15
H-03: Inaccurate Binomial Interest Approximation_____________________________ 17
H-04: Micro-Loan Interest Rounding to 0____________________________________ 20
M-01: Phantom Reserved Interest on Non-Compounding Withdrawal______________ 20
M-02: Inactive Underwriter Causes Permanent DoS___________________________ 21
M-03: Missing Role Check for Protocol Admin Role Count Decrementing___________ 21
M-04: Fee Bypass via Micro-Repayments___________________________________ 22
M-05: Phantom Reserved Shares from Request Update________________________ 22
M-06: Incorrect Withdrawal Limits__23
M-07: Pool Manager Can Frontrun Settings Approval__________________________ 23
M-08: Emergency Withdrawal Timelock Risk_________________________________ 23
M-09: Emergency Withdrawal Accounting Mismatch___________________________ 24
M-10: Missing Pause Guards on Withdrawals________________________________ 24
M-11: Double-Counting of Accumulated Rounding Dust_________________________24
L-01: Dust Threshold Calculation Error______________________________________25
L-02: Flawed Dust Accumulation Mechanism_________________________________ 25
L-03: maxWithdraw and maxRedeem Calculation Errors________________________ 26
L-04: Last Admin Can Renounce Role______________________________________ 27
L-05: Minimum Deposit Check Inconsistency_________________________________ 27
L-06: Deposits Allowed on Deactivated Tranche______________________________ 27
L-07: Checks Covering for Calculation Mistakes______________________________ 28
L-08: Missing Zero Interest Rate Validation__________________________________ 29
L-09: Rounding Favoritism for Non-Compounding LPs_________________________ 29
L-10: Incorrect Utilization Rate Formula_____________________________________ 29
I-01: Checks-Effects-Interactions Pattern Not Followed_________________________ 30

 3 / 37 ​ ​ ​ ​ ​ ​ ​ ​ <node/>.security

I-02: Stale Pending Proposal Issue___30
I-03: Inactive Tranche Not Removed from List________________________________ 30

6. Additions__ 31
Structure recommendations__ 31
Code improvements__ 31
Notes__34

7. Final Recommendations__ 36
Summary___36
Remediation & Testing__ 36

8. Conclusion__ 36
9. Summary - Post Remediation__ 37

 4 / 37 ​ ​ ​ ​ ​ ​ ​ ​ <node/>.security

1. Introduction

Following our request to review the source code of Textile’s on-chain lending infrastructure,
this report outlines our systematic approach to evaluating potential security issues, semantic
inconsistencies between the design and implementation, and recommendations for
improvements in both security and performance. Our review focused on the core contracts
that handle deposits, loan issuance, interest accrual and collection, and proxy-based vault
deployment. Overall, while the contracts exhibit many best practices - including role-based
access control, UUPS upgrade safety, and non-reentrant transfer patterns - the audit
identified critical vulnerabilities involving checkpoint updates, interest calculations, and
governance risks that require architectural and code improvements before the protocol can
be securely deployed.

1.1 About Textile

Textile is a decentralized lending protocol that transforms the traditional private credit market
into an open, programmable capital graph. In Textile, every participant, whether an individual
or institution, can become part of the credit supply chain without relying on traditional
intermediaries.

Textile's mission is to decentralize trust and underwriting, allowing credit to reach the far
"edges" of the economy where it's needed most, by lowering the technical barrier to
participation so anyone can join.

1.2 About node.security

node.security Audits is a dedicated team specializing in smart contract security and
blockchain risk management. Our team leverages a combination of automated tools and
manual review to evaluate contracts thoroughly. We adhere to industry best practices and
continuously update our methodologies based on emerging threats and vulnerabilities. For
any queries or additional information, we can be reached via Telegram.

1.3 Disclaimer
This audit represents an independent security review of the smart contracts provided and is
not a substitute for the complete functional testing that should be performed before any
software release. Although every effort has been made to identify vulnerabilities, no audit
can guarantee that all potential issues have been discovered. We strongly recommend
additional independent audits and a public bug bounty program to further strengthen the
security posture. This report is intended solely for security evaluation purposes and should
not be interpreted as investment advice.

 5 / 37 ​ ​ ​ ​ ​ ​ ​ ​ <node/>.security

2. Report Structure

This audit report is organized to facilitate clear and efficient navigation from the most critical
findings to less significant issues. Each issue is carefully documented with its severity rating
and status, ensuring that readers can quickly assess the overall security posture and
prioritize remediation efforts.

2.1 Issue tags

Issues are tagged as:

●​ Resolved: The issue has been fixed.
●​ Unresolved: The issue remains open.
●​ Verified: The functionality has been reviewed and confirmed with the client.

2.2 Severity levels

Severity levels are defined as follows:

●​ Critical: Issues that may lead to direct loss of funds or severe misallocation.
●​ High: Issues that significantly disrupt contract operation or pose a high risk of

exploitation.
●​ Medium: Issues that affect the operation in non-catastrophic ways.
●​ Low: Minor issues that have minimal impact.
●​ Info: Observations that do not impact functionality but provide guidance for best

practices.

 6 / 37 ​ ​ ​ ​ ​ ​ ​ ​ <node/>.security

2.3 Vulnerability Categories

Our audit followed a structured checklist covering a wide range of potential issues, from
basic coding errors to advanced DeFi attack vectors. This approach ensures that every
aspect of the code is thoroughly examined. The categories we evaluated include:

Basic Coding Bugs:
●​ Constructor and initializer mismatches
●​ Overflows, underflows, and unchecked arithmetic
●​ Short address or parameter attacks
●​ Uninitialized storage pointers

Semantic Consistency Checks:
●​ Consistency between the code and the design documentation
●​ Clarity of comments and correct parameter naming
●​ Detection of misleading or outdated code comments

Access Control & Authorization:
●​ Verification of role-based restrictions
●​ Proper management of privileged operations to prevent unauthorized access

Reentrancy & External Calls:
●​ Identification of reentrancy vulnerabilities
●​ Ensuring adherence to the checks-effects-interactions pattern

Business Logic & Financial Flow:
●​ Correct implementation of deposit, withdrawal, staking, and reward distribution
●​ Enforcement of lock periods, daily withdrawal caps, and minimum deposit amounts
●​ Ensuring consistency between internal state and actual token balances

Advanced DeFi Attack Vectors:
●​ Front-running, flash loan exploitation, and MEV risks
●​ Oracle manipulation and price feed vulnerabilities

Resource Management & Gas Optimization:
●​ Efficiency of loops and unbounded iterations
●​ Removal of redundant operations
●​ Appropriate use of compiler optimizations and internal function visibility

External Integration & Compatibility:
●​ Interaction with ERC20 tokens and potential issues with deflationary or rebasing

tokens
●​ Proper handling of external contract calls and integration with critical services

Coding Standards & Documentation:
●​ Consistent naming conventions and parameter usage
●​ Correct and clear code comments without typos
●​ Adherence to best practices in coding style and organization

This comprehensive checklist enabled us to systematically identify and address
vulnerabilities, ensuring a detailed and thorough audit of the contracts.

 7 / 37 ​ ​ ​ ​ ​ ​ ​ ​ <node/>.security

3. Scope of Work

Contracts Audited:

textile-protocol/textile-monorepo/tree/dev/packages/protocol/contracts/v2.1

Focus Areas:

1.​ Access Control: Admin/manager roles, upgrade permissions, vault-role
assignments

2.​ Interest Mechanics: Compound-interest precision, accrual timing, rounding behavior
3.​ Liquidity & Solvency: Withdrawal limits, outstanding-debt checks, fund-reserve

safeguards
4.​ Module Integration: Vault-collector interactions, permission scoping, multi-tenant

isolation
5.​ Initialization & Upgrades: Proxy setup, initializer guards, UUPS authorization
6.​ Token Interoperability: Decimal normalization, allowance/transfer patterns, ERC-20

quirks
7.​ Efficiency & Gas: Loop bounds, redundant state, parameter validation

4. Methodology

1.​ Manual Code Review: Line-by-line inspection of each contract, focusing on fund
flows (deposit, withdraw), lock enforcement, and external calls.

2.​ Automated Analysis: Tools such as Slither, Mythril for static analysis and
vulnerability detection (reentrancy patterns, uninitialized storage, etc.).

3.​ Threat Modeling: Considering ways an attacker could bypass daily caps, lock
periods, or manipulate callbacks.

4.​ Testing & Simulation: Deployed in a test environment, tried scenarios for normal
usage and malicious attempts.

5.​ Reporting: Consolidation of all findings by severity, with recommended fixes and
references to the code.

 8 / 37 ​ ​ ​ ​ ​ ​ ​ ​ <node/>.security

https://github.com/textile-protocol/textile-monorepo/tree/dev/packages/protocol/contracts/v2.1

5. Findings
The audit uncovered several critical and high-severity vulnerabilities primarily related to
missing checkpoint updates for non-compounding liquidity providers, incorrect interest
calculations, and potential governance bypass mechanisms. These issues pose significant
risks such as unauthorized fund withdrawals, balance manipulation, and disruption of
protocol operations. The findings highlight the need for important architectural and code
changes, as detailed in this report, to properly address these vulnerabilities and enhance the
protocol’s security and reliability. Addressing the items below will ensure the protocol is
robust, transparent, and production-ready.

Below is a summary of the issues found. Each includes a severity rating (Critical, High,
Medium, Low, Informational), title, category, explanation and our recommended remediation.

ID Severity Title Category Status

C-01 Critical Missing Checkpoint Update for
Non-Compounding LPs Minting

Business Logic Resolved

C-02 Critical Missing Checkpoint Update for Receiving
Non-Compounding LPs

Business Logic Resolved

C-03 Critical Missing Burning of Shares on
Auto-Claiming

Business Logic Resolved

H-01 High Claiming of Interest with 0 Shares Burnt Business Logic Resolved

H-02 High Non-Compounding Interest Calculation
Error

Financial Logic Resolved

H-03 High Inaccurate Binomial Interest
Approximation

Financial Logic Resolved

H-04 High Micro-Loan Interest Rounding to Zero Financial Logic Resolved

M-01 Medium Phantom Reserved Interest on
Non-Compounding Withdrawal

Financial Logic Resolved

M-02 Medium Inactive Underwriter Causes Permanent
DoS

Business Logic Resolved

M-03 Medium Missing Role Check for Protocol Admin
Role Count Decrementing

Access Control Resolved

M-04 Medium Fee Bypass via Micro-Repayments Financial Logic Resolved

M-05 Medium Phantom Reserved Shares from Request
Update

Financial Logic Resolved

M-06 Medium Incorrect Withdrawal Limits Financial Logic Resolved

M-07 Medium Pool Manager Can Frontrun Settings
Approval

Access Control Resolved

M-08 Medium Emergency Withdrawal Timelock Risk Business Logic Resolved

M-09 Medium Emergency Withdrawal Accounting
Mismatch

Financial Logic Resolved

M-10 Medium Missing Pause Guards on Withdrawals Financial Logic Resolved

 9 / 37 ​ ​ ​ ​ ​ ​ ​ ​ <node/>.security

M-11 Medium Double-Counting of Accumulated
Rounding Dust

Financial Logic Resolved

L-01 Low Dust Threshold Calculation Error Financial Logic Resolved

L-02 Low Flawed Dust Accumulation Mechanism Financial Logic Resolved

L-03 Low maxWithdraw and maxRedeem
Calculation Errors

Financial Logic Resolved

L-04 Low Last Admin Can Renounce Role Access Control Resolved

L-05 Low Minimum Deposit Check Inconsistency Business Logic Resolved

L-06 Low Deposits Allowed on Deactivated Tranche Business Logic Resolved

L-07 Low Checks Covering for Calculation Mistakes Code Quality Partially
resolved

L-08 Low Missing Zero Interest Rate Validation Financial Logic Resolved

L-09 Low Rounding Favoritism for
Non-Compounding LPs

Financial Logic Resolved

L-10 Low Incorrect Utilization Rate Formula Business Logic Resolved

I-01 Info Checks-Effects-Interactions Pattern Not
Followed

Code Quality Resolved

I-02 Info Stale Pending Proposal Issue Business Logic Unresolved

I-03 Info Inactive Tranche Not Removed from List Code Quality Resolved

 10 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

C-01: Missing Checkpoint Update for Non-Compounding LPs Minting

Severity: Critical​
Category: Business Logic

Description:​
When a non-compounding LP that has existing shares mints/deposits, they get new shares
but their checkpoint isn’t updated. Which means they can claim interest for those new shares
that haven’t accumulated interest yet, thus effectively stealing that interest from the rest of
the LPs by reducing share price. This is extremely dangerous because it will cause innocent
users to steal funds without realizing, by depositing more funds and then claiming interest.
Also the amount of interest stolen is proportional to the amount deposited, which is
unlimited, so a malicious user can steal all the reserved interest in the tranche. When
minting new shares, must update the minter checkpoint to a weighted average with current
reservedInterestPerShareAccumulated to prevent this. Recommended to add
weighting average in _update for the case of toNonCompounding and
!fromNonCompounding (fromNonCompounding will be false in case from is zero
address).

​
Example:

reservedInterestPerShareAccumulated = 10e18​
User (non-compounding): 100 shares, checkpoint = 10e18​
User's claimable: (10e18 - 10e18) × 100 / 1e18 = 0

New interest accrues:​
reservedInterestPerShareAccumulated = 11e18​
User's claimable: (11e18 - 10e18) × 100 / 1e18 = 100

User deposits 100 new shares.​
After deposit:​
User: 200 shares, checkpoint = 10e18 (unchanged)​
User's claimable: (11e18 - 10e18) × 200 / 1e18 = 200​
User gained extra 100 interest that the new shares never earned (or gain any extra X assets on any
deposit of X new shares)

If User's checkpoint had been updated it would have been (10e18 × 100 + 11e18 × 100) / (100 + 100)
= 10.5e18, resulting in claimable being (11e18 - 10.5e18) × 200 / 1e18 = 100 as expected

 11 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

C-02: Missing Checkpoint Update for Receiving Non-Compounding LPs

Severity: Critical​
Category: Business Logic

Description:​
When a non compounding LP that has existing shares receives shares from a compounding
LP, the receiver’s checkpoint is not updated, resulting in the receiver being able to claim
more interest than actually deserved, thus effectively stealing that interest from the rest of
the LPs by reducing share price. Any transfer from a compounding LP to a
non-compounding LP will result in the non-compounding LP receiving more interest than
actually earned when claiming, even innocent users. Receiver’s checkpoint should be weight
averaged with reservedInterestPerShareAccumulated to prevent this.

Example:

User A (compounding): 100 shares​
User B (non-compounding): 100 shares, checkpoint = 3e18​
User B's claimable: (10e18 - 3e18) × 100 / 1e18 = 700​
User A transfers 50 shares to User B.

After transfer:​
User B: 150 shares, checkpoint = 3e18 (unchanged)​
User B's claimable: (10e18 - 3e18) × 150 / 1e18 = 1,050​
User B gained extra 350 interest that was never reserved

If User B’s checkpoint had been updated it would have been (3e18 × 100 + 10e18 × 50) / (100 + 50) =
5333333333333333333, resulting in claimable being (10e18 - 5.333e18) × 150 / 1e18 = 700 as
expected

 12 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

C-03: Missing Burning of Shares on Auto-Claiming

Severity: Critical​
Category: Business Logic

Description:​
When a non-compounding LP sends shares to a compounding LP, there’s an auto claim of
the accumulated interest to the sender, but the shares proportional to the interest received
are not burnt (as they are on a normal claim), allowing users to send shares to another
compounding address they own and receiving assets without burning the proportional
shares, thus effectively stealing that interest from the rest of the LPs by reducing share price.
Add appropriate share burning to _autoClaimOnTransfer. Recommended to use an
internal shared function that both _autoClaimOnTransfer and
_claimReservedInterestInternal use, and call it before calling _update.

Example:

reservedInterestPerShareAccumulated = 10e18​
totalAssets = 30,000​
totalSupply = 300 shares​
Share price = 30,000 / 300 = 100 assets/share​
User A (non-compounding): 100 shares, checkpoint = 3e18​
User B (compounding, controlled by A): 100 shares = 100 × 100 = 10,000 assets​
User C (compounding, innocent LP): 100 shares = 100 × 100 = 10,000 assets​
User A's claimable: (10e18 - 3e18) × 100 / 1e18 = 700 assets​
User A transfers 100 shares to User B.

After transfer (with bug - no shares burned):​
TotalSupply: 300 (unchanged)​
totalAssets: 30,000 - 700 = 29,300​
Share price: 29,300 / 300 = 97.67 assets/share (reduced)​
User A: 0 shares, 700 assets claimed​
User B: 200 shares = 200 × 97.67 = 19,534 assets​
User C: 100 shares = 100 × 97.67 = 9,767 assets​
User A+B combined: 700 + 19,534 = 20,234 assets​
User C lost 233 from original 10,000

If shares had been burned correctly (like in normal claim): sharesToBurn =
convertToShares(700) = 700 / 100 = 7 shares​
After transfer (with fix - shares burned):​
totalSupply: 300 - 7 = 293 shares​
totalAssets: 29,300​
Share price: 29,300 / 293 = 100 assets/share (maintained)​
User A: 0 shares, 700 assets claimed​
User B: 200 - 7 = 193 shares = 193 × 100 = 19,300 assets​
User C: 100 shares = 100 × 100 = 10,000 assets (no loss)

Also, since the sender’s checkpoint is not updated, as stated in C-01, user A can send to user B most
of his shares and keep 1 share, and then send back the shares from user B to user A and repeat the
process until the entire reserved interest is drained.

 13 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

H-01: Claiming of Interest with 0 Shares Burnt

Severity: High​
Category: Business Logic

Description:​
In _claimReservedInterestInternal, revert in case sharesToBurn == 0.
Otherwise a fee will be transferred to the user without burning any shares, in case the
claimable amount is smaller than the share price. This is possible if the number of user
shares multiplied by the accumulated interest per share since last checkpoint is smaller than
the share price. This allows a user to claim his percentage of the reserved interest without
burning any shares, thus effectively stealing that interest from the rest of the LPs by reducing
share price. This means the user can redeem those shares and earn double on them.

Example:​
totalAssets = 100,000​
totalSupply = 1000 shares​
Share price = 100,000 / 1000 = 100 assets/share​
totalSharesWithDisabledCompounding = 1000 (100% of all shares)

User keeps 200 accounts with 1 share each (20% of all shares with disabled compounding) and waits
for an interest accrual smaller than share price (claims interest as usual until that happens), then
claims interest on all accounts at once and receives it without burning any shares, receiving his
percent of the non-compounding shares of the newly accrued interest:

An interest of 10000 assets is paid which 10000 of becomes reserved for non compounding, and
yields 10000/1000 = 10 assets reserved per share

totalAssets = 110,000​
totalSupply = 1000 shares​
Share price = 110,000 / 1000 = 110 assets/share​
totalSharesWithDisabledCompounding = 1000 (100% of all shares)

Each claim per 1 share has only latest checkpoint and so it’s claimable amount is 10 * 1 = 10 assets,
and since sharesToBurn = convertToShares(claimable) it would burn 0 assets.
Resulting in the user claiming 200 * 10 = 2000 assets without burning any shares, and reducing share
price. After the claims:

totalAssets = 108,000​
totalSupply = 1000 shares​
Share price = 108,000 / 1000 = 108 assets/share​
totalSharesWithDisabledCompounding = 1000 (100% of all shares)

If the user had one account with 100 shares, this interest claim would result in claimable being the
same 10 * 200 = 2000 assets and 2000 / 110 = 18 shares burnt. This means the user would have
been left with 182 shares after the claim. But the user got to keep these 18 shares and can now
redeem them, earning an extra 18 * 108 = 1944 assets. In this scenario, after the claim:

totalAssets = 108,000​
totalSupply = 982 shares​
Share price = 108,000 / 982 = 109.979633401 assets/share (slightly reduced due to floor rounding)​

 14 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

H-02: Non-Compounding Interest Calculation Error

Severity: High​
Category: Financial Logic

Description:​
Interest is not really compounding but only compounding per each accrual period, only on
the outstanding debt (principal, not including accumulated interest). So the more frequent the
accruals, the smaller the interest will be since it’s only compounded over the period since the
last accrual. This allows the borrower to frequently call accrueInterest and reduce the
interest they owe. To have true compounding, the _acumulatedInterest must be added
into the calculation of the new interest.

Example:

Interest rate is set to 20% annually​
Borrower does a drawdown of 10,000$​
Borrower calls accrueInterest once a month for a year:

Month 1: newInterest = 10,000 - 10,000*(1 + 20%/seconds per year)^(seconds in 1 month) =
168.17589552​
And since the outstandingDebt hasn’t changed, for every month following, the calculation
would be the same:​
Month 2: newInterest = 10,000 - 10,000*(1 + 20%/seconds per year)^(seconds in 1 month) =
168.17589552​
And so on, resulting in the interest accumulated over the year to be 168.17589552 * 12 =
2,018.1107462

Whereas if the borrower had called accrueInterest once after a year that would result in
the interest being:​
newInterest = 10,000*(1 + 20%/seconds per year)^(seconds in 1 year) - 10,000 =
2,214.02757386​
Resulting in a loss of 195.91682766 of interest that should have been paid.

If the calculation had included the interest in the outstanding debt, that would result in the
following interests accrued:

Month 1: newInterest = 10,000 - 10,000*(1 + 20%/seconds per year)^(seconds in 1 month) =
168.17589552​
Month 2: newInterest = 10,168.17589552 × (1 + 20%/seconds per year)^(seconds in 1
month) - 10,168.17589552 = 171.02358968​
Month 3: newInterest = 10,339.19948520 × (1 + 20%/seconds per year)^(seconds in 1
month) - 10,339.19948520 = 173.88118210​
Month 4: newInterest = 10,513.08066730 × (1 + 20%/seconds per year)^(seconds in 1
month) - 10,513.08066730 = 176.76904603​
Month 5: newInterest = 10,689.84971333 × (1 + 20%/seconds per year)^(seconds in 1
month) - 10,689.84971333 = 179.68222889​
Month 6: newInterest = 10,869.53194222 × (1 + 20%/seconds per year)^(seconds in 1

 15 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

month) - 10,869.53194222 = 182.62399555​
Month 7: newInterest = 11,052.15593777 × (1 + 20%/seconds per year)^(seconds in 1
month) - 11,052.15593777 = 185.59473467​
Month 8: newInterest = 11,237.75067244 × (1 + 20%/seconds per year)^(seconds in 1
month) - 11,237.75067244 = 188.59596551​
Month 9: newInterest = 11,426.34663795 × (1 + 20%/seconds per year)^(seconds in 1
month) - 11,426.34663795 = 191.62807567​
Month 10: newInterest = 11,617.97471362 × (1 + 20%/seconds per year)^(seconds in 1
month) - 11,617.97471362 = 194.69250958​
Month 11: newInterest = 11,812.66722320 × (1 + 20%/seconds per year)^(seconds in 1
month) - 11,812.66722320 = 197.79072702​
Month 12: newInterest = 12,010.45795022 × (1 + 20%/seconds per year)^(seconds in 1
month) - 12,010.45795022 = 200.92320008

Total interest accrued over the year: 168.17589552 + 171.02358968 + 173.88118210 +
176.76904603 + 179.68222889 + 182.62399555 + 185.59473467 + 188.59596551 +
191.62807567 + 194.69250958 + 197.79072702 + 200.92320008 = 2,211.38115030

The correct monthly compounding yields 2,211.38115030, which is very close to the yearly
accrual (2,214.02757386). The small difference is due to the difference between discrete
monthly periods and 1 year.

 16 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

H-03: Inaccurate Binomial Interest Approximation

Severity: High​
Category: Financial Logic

Description:​
Add the fourth order to the binomial approximation or use direct calculation without
approximation for interest accuracy. For large APRs and/or large principal amounts the
difference is substantial. See following examples:

$10,000 PRINCIPAL

TABLE 1A.1: Interest Earned - Binomial Approximation

Rate 1 Day 1 Week 1 Month 3 Months 6 Months 1 Year 2 Years 5 Years

1% APR $0.27 $1.92 $8.22 $24.69 $49.44 $100.50 $202.00 $512.50

5% APR $1.37 $9.59 $41.18 $124.05 $249.63 $512.66 $1,051.25 $2,832.10

10%
APR

$2.74 $19.20 $82.53 $249.64 $505.50 $1,051.62 $2,212.96 $6,452.55

20%
APR

$5.48 $38.43 $165.74 $505.51 $1,036.54 $2,213.33 $4,906.63 $16,666.17

50%
APR

$13.71 $96.35 $419.52 $1,312.00 $2,794.73 $6,458.30 $16,666.43 $82,287.96

100%
APR

$27.43 $193.63 $856.62 $2,794.74 $6,347.38 $16,666.64 $53,333.11 $383,329.79

TABLE 1A.2: Interest Earned - Exact Power
Rate 1 Day 1 Week 1 Month 3 Months 6 Months 1 Year 2 Years 5 Years

1% APR $0.27 $1.92 $8.22 $24.69 $49.44 $100.50 $202.01 $512.71

5% APR $1.37 $9.59 $41.18 $124.05 $249.64 $512.71 $1,051.71 $2,840.25

10%
APR

$2.74 $19.20 $82.53 $249.64 $505.51 $1,051.71 $2,214.03 $6,487.21

20%
APR

$5.48 $38.43 $165.74 $505.51 $1,036.58 $2,214.03 $4,918.25 $17,182.82

50%
APR

$13.71 $96.35 $419.52 $1,312.10 $2,796.36 $6,487.21 $17,182.82 $111,824.94

100%
APR

$27.43 $193.63 $856.64 $2,796.36 $6,374.67 $17,182.82 $63,890.56 $1,474,131.47

TABLE 1A.3: Interest Loss (Exact - Binomial)
Rate 1 Day 1 Week 1 Month 3

Months
6
Months

1 Year 2 Years 5 Years

1% APR $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.01 $0.21

5% APR $0.00 $0.00 $0.00 $0.00 $0.01 $0.05 $0.45 $8.15

10%
APR

$0.00 $0.00 $0.00 $0.00 $0.01 $0.09 $1.06 $34.66

20%
APR

$0.00 $0.00 $0.00 $0.00 $0.04 $0.70 $11.61 $516.65

50%
APR

$0.00 $0.00 $0.00 $0.10 $1.62 $28.91 $516.39 $29,536.98

 17 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

100%
APR

$0.00 $0.00 $0.02 $1.62 $27.29 $516.18 $10,557.45 $1,090,801.68

$100,000 PRINCIPAL

TABLE 1B.1: Interest Earned - Binomial Approximation
Rate 1 Day 1 Week 1 Month 3 Months 6 Months 1 Year 2 Years 5 Years

1% APR $2.74 $19.18 $82.23 $246.88 $494.37 $1,005.00 $2,020.00 $5,125.00

5% APR $13.70 $95.94 $411.80 $1,240.50 $2,496.34 $5,126.57 $10,512.55 $28,321.02

10%
APR

$27.40 $191.96 $825.30 $2,496.40 $5,055.05 $10,516.20 $22,129.63 $64,525.54

20%
APR

$54.81 $384.30 $1,657.42 $5,055.10 $10,365.40 $22,133.29 $49,066.35 $166,661.68

50%
APR

$137.08 $963.52 $4,195.19 $13,119.99 $27,947.33 $64,583.04 $166,664.29 $822,879.57

100%
APR

$274.35 $1,936.32 $8,566.21 $27,947.36 $63,473.80 $166,666.38 $533,331.06 $3,833,297.89

TABLE 1B.2: Interest Earned - Exact Power
Rate 1 Day 1 Week 1 Month 3 Months 6 Months 1 Year 2 Years 5 Years

1% APR $2.74 $19.18 $82.23 $246.88 $494.37 $1,005.02 $2,020.13 $5,127.11

5% APR $13.70 $95.94 $411.80 $1,240.51 $2,496.40 $5,127.11 $10,517.09 $28,402.54

10%
APR

$27.40 $191.96 $825.30 $2,496.40 $5,055.13 $10,517.09 $22,140.28 $64,872.13

20%
APR

$54.81 $384.30 $1,657.42 $5,055.13 $10,365.80 $22,140.28 $49,182.47 $171,828.18

50%
APR

$137.08 $963.52 $4,195.20 $13,120.98 $27,963.56 $64,872.13 $171,828.18 $1,118,249.37

100%
APR

$274.35 $1,936.32 $8,566.40 $27,963.56 $63,746.72 $171,828.18 $638,905.59 $14,741,314.73

TABLE 1B.3: Interest Loss (Exact - Binomial)
Rate 1 Day 1 Week 1 Month 3

Months
6
Months

1 Year 2 Years 5 Years

1% APR $0.00 $0.00 $0.00 $0.00 $0.00 $0.02 $0.13 $2.11

5% APR $0.00 $0.00 $0.00 $0.01 $0.06 $0.54 $4.55 $81.52

10%
APR

$0.00 $0.00 $0.00 $0.01 $0.08 $0.89 $10.64 $346.59

20%
APR

$0.00 $0.00 $0.00 $0.03 $0.41 $6.98 $116.12 $5,166.50

50%
APR

$0.00 $0.00 $0.01 $0.99 $16.23 $289.09 $5,163.89 $295,369.81

100%
APR

$0.00 $0.00 $0.19 $16.20 $272.93 $5,161.80 $105,574.53 $10,908,016.84

$1,000,000 PRINCIPAL

TABLE 1C.1: Interest Earned - Binomial Approximation
Rate 1 Day 1 Week 1 Month 3

Months
6
Months

1 Year 2 Years 5 Years

 18 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

1% APR $27 $192 $822 $2,469 $4,944 $10,050 $20,200 $51,250

5% APR $137 $959 $4,118 $12,405 $24,963 $51,266 $105,125 $283,210

10%
APR

$274 $1,920 $8,253 $24,964 $50,550 $105,162 $221,296 $645,255

20%
APR

$548 $3,843 $16,574 $50,551 $103,654 $221,333 $490,663 $1,666,617

50%
APR

$1,371 $9,635 $41,952 $131,200 $279,473 $645,830 $1,666,643 $8,228,796

100%
APR

$2,743 $19,363 $85,662 $279,474 $634,738 $1,666,664 $5,333,311 $38,332,979

TABLE 1C.2: Interest Earned - Exact Power
Rate 1 Day 1 Week 1 Month 3

Months
6
Months

1 Year 2 Years 5 Years

1% APR $27 $192 $822 $2,469 $4,944 $10,050 $20,201 $51,271

5% APR $137 $959 $4,118 $12,405 $24,964 $51,271 $105,171 $284,025

10%
APR

$274 $1,920 $8,253 $24,964 $50,551 $105,171 $221,403 $648,721

20%
APR

$548 $3,843 $16,574 $50,551 $103,658 $221,403 $491,825 $1,718,282

50%
APR

$1,371 $9,635 $41,952 $131,210 $279,636 $648,721 $1,718,282 $11,182,494

100%
APR

$2,743 $19,363 $85,664 $279,636 $637,467 $1,718,282 $6,389,056 $147,413,147

TABLE 1C.3: Interest Loss (Exact - Binomial)
Rate 1 Day 1 Week 1 Month 3

Months
6
Months

1 Year 2 Years 5 Years

1% APR $0 $0 $0 $0 $0 $0 $1 $21

5% APR $0 $0 $0 $0 $1 $5 $45 $815

10%
APR

$0 $0 $0 $0 $1 $9 $106 $3,466

20%
APR

$0 $0 $0 $0 $4 $70 $1,161 $51,665

50%
APR

$0 $0 $0 $10 $162 $2,891 $51,639 $2,953,698

100%
APR

$0 $0 $2 $162 $2,729 $51,618 $1,055,745 $109,080,168

 19 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

H-04: Micro-Loan Interest Rounding to 0

Severity: High​
Category: Financial Logic

Description:​
The interest calculation converts the compounded amount from RAY precision (1e27) to standard
precision through integer division, which rounds down to zero for small principal amounts over
short time periods. For example, a loan of $13.14 USDC (for 6-decimal tokens) will accrue 0
interest if accrueInterest() is called every 12 seconds, while a $2.63 USDC loan accrues 0
with per-minute calls. Borrowers can exploit this by either taking micro-loans below these
thresholds or by frequently calling accrueInterest() on larger loans to prevent any interest
from accumulating. Consider implementing a minimum loan amount to prevent micro-loans,
and/or adding a minimum accrual interval to prevent griefing through frequent zero-interest
accruals.

M-01: Phantom Reserved Interest on Non-Compounding Withdrawal

Severity: Medium​
Category: Financial Logic

Description:​
When a non-compounding LP withdraws/redeems, the amount that was reserved per the
redeemed shares doesn’t get subtracted from reservedForNonCompoundingInterest,
and so remains reserved so that the borrower can’t borrow it, and other LPs can’t withdraw
it. The reserved amount can’t be unreserved in any way and so remains stuck in the
contract, since the reserved amount can’t be reduced. This means that the only way to get
the last funds in the contract below this amount is to do an emergency withdrawal, but even
this doesn't fix the accounting—the phantom reservation in
reservedForNonCompoundingInterest persists permanently, making the contract
accounting permanently broken.

 20 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

M-02: Inactive Underwriter Causes Permanent DoS

Severity: Medium​
Category: Business Logic

Description:​
If an underwriter of a pool makes himself inactive (by calling
UnderwriterRegistry.deactivate) then the pool’s functionality will be permanently
disabled since drawdown, repay, repayInterest, repayAll will all revert on
getUnderwriterFees, and there’s no mechanism to revoke the underwriter once set (also
depositing/minting to the tranche will revert). Add a check that underwriter is active to
calculateInterestFees (and not only that it is set) and consider adding a pool manager
function to revoke an inactive underwriter so that a new one can be set. Also consider
allowing the manager to always be able to revoke the underwriter

M-03: Missing Role Check for Protocol Admin Role Count Decrementing

Severity: Medium​
Category: Access Control

Description:​
In renounceRole, the _protocolAdminCount is decremented whether the account had
the role or not. This way this function can be called with any sender address and still
decrement the _protocolAdminCount until it is equal to 1, which will not allow anyone
else to renounce the protocol admin role. This is also irreversible and the count can’t be
recovered to the right count.

 21 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

M-04: Fee Bypass via Micro-Repayments

Severity: Medium​
Category: Financial Logic

Description:​
The borrower (or anyone) can repay the interest in tiny amounts, resulting in protocol and
underwriter fees being less than 1 wei and getting rounded down to 0. This way the whole
mechanism of fees can be overridden and fees never paid, and the total interest paid will be
less than it should have been since no fees will be deducted and it will all go to net interest.
This allows the borrower to practically steal the fees from the protocol. Recommended to
add a minimum amount to repayments, which should include the remainder of the debt,
meaning: revert if amount < MIN_REPAYMENT && amount < totalOwed on repay (to
alow a payment of less then the minimum in case the rest of the debt is less then the
minimum) and revert if interestOwed < MIN_REPAYMENT on repayInterest. There’s
no need for a limit on repayAll since it clears the debt and no new interest will be
accumulated until next drawdown, and also it should have no limit since it’s meant for
borrowers to close their position. For the smallest fee possible, of 1/10000, a minimum of
10000 wei is enough to prevent this from happening and fees to be paid. Note that fees are
still rounded down, so there could still be a loss of 1 wei per repayment.

M-05: Phantom Reserved Shares from Request Update

Severity: Medium​
Category: Financial Logic

Description:​
If a user had a withdrawal request approved, but then instead of withdrawing made a new
withdrawal request, the request is updated with the new requested amount and the approval
status is set to false, but totalReservedShares[tranche] is not updated. This leaves
phantom shares reserved that are locked away and not reserved for anyone, and can’t be
borrowed or withdrawn. This permanent accounting corruption accumulates over time with
no recovery mechanism To fix: in createRequest, check if the user had a previously
approved request and if so, deduct the amount from totalReservedShares[tranche].

 22 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

M-06: Incorrect Withdrawal Limits

Severity: Medium​
Category: Financial Logic

Description:​
The amount of assets that is withdrawn/redeemed is only checked to be smaller than the
virtual balance, and not smaller than getAvailableForBorrowing() as is checked in
approveRedeemRequest. This can result in users withdrawing assets that have been
previously reserved for non-compounding interest. Fix by checking withdrawal/redeem
amounts are smaller than (fixed) maxWithdraw or maxRedeem.

M-07: Pool Manager Can Frontrun Settings Approval

Severity: Medium​
Category: Access Control

Description:​
Pool manager can propose tranche or credit line settings change for underwriter’s approval, and
frontrun the underwriter’s approval call with a proposal for different settings, and so get any settings
approved. Consider including the settings or a settings id/nonce in the approve function.

M-08: Emergency Withdrawal Timelock Risk

Severity: Medium​
Category: Business Logic

Description:​
Remove timelock on reserve’s emergency withdrawal (and so get rid of the EmergencyWithdrawal
struct and EMERGENCY_TIMELOCK constant). In case of emergency where the guardian wants to
withdraw funds from the reserve, you don’t want to have to wait 3 days before the funds could be
retrieved. Also, In case the reserve balance has decreased in those 3 days below the requested
amount, the emergency withdrawal would fail and a new request will have to be submitted.

 23 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

M-09: Emergency Withdrawal Accounting Mismatch

Severity: Medium​
Category: Financial Logic

Description:​
Emergency withdrawal from the reserve does not update the tranche’s virtual balance and interest
reserved for non-compounding, resulting in an accounting mismatch. It will leave a false share price
and a bank run scenario - only the first users to withdraw will succeed until reserve is empty and then
any withdrawals, claiming of reserved interest or drawdowns will fail. On emergency withdrawal,
consider updating the tranche’s virtual balance and interest reserved for non-compounding, and
adding a factor to reduce by when calculating claimable. It could be left as is and pause all
functionality until the funds are returned to the reserve and normal functionality is restored. Consider
which scenarios the emergency withdrawal is meant for and how you want to deal with them.

M-10: Missing Pause Guards on Withdrawals

Severity: Medium​
Category: Financial Logic

Description:​
withdraw, redeem and claimReservedInterest (and also transfers) in tranche are not
marked whenPoolNotPaused and whenNotShutdown. Consider whether you want to
allow users to withdraw during pause/shutdown, especially since emergency withdrawal
creates a bank run situation in its current implementation. Note that withdrawal requests can
be paused at the protocol level at the withdrawal registry.

M-11: Double-Counting of Accumulated Rounding Dust

Severity: Medium​
Category: Financial Logic

Description:​
When _accumulatedRoundingDust passes the threshold, it is added to
virtualBalance, but that amount has already been added to the virtual balance as part of
the net interest in recordInterest. This causes this dust to be counted twice in
virtualBalance and so inflating `totalAssets’ and raising the share price without having
the assets in the reserve to back it up, resulting in withdrawal failures. Remove this line.

 24 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

L-01: Dust Threshold Calculation Error

Severity: Low​
Category: Financial Logic

Description:​
Dust threshold is supposed to be 1 unit of the underlying asset (e.g., 1
USDC = 1e6) as the documentation states, but it’s calculated as dustThreshold =
10**decimals(), where decimals are calculated as _underlyingDecimals +
_decimalsOffset(). This will result as the dust threshold being 10**(6+7) in the case of
USDC as the underlying asset, so 10**7 = 10,000,000 USDC. To fix, set the dust threshold
as 10 ** _underlyingDecimals, preferably as an immutable state variable set on
initialization and not calculated every time.

L-02: Flawed Dust Accumulation Mechanism

Severity: Low​
Category: Financial Logic

Description:​
The whole mechanism of dust accumulation is flawed, it’s not possible to redistribute that
dust back to compounding LPs since it has been reserved for non-compounding LPs, and
could have been all claimed. Remove this mechanism and choose whether you want to
round up or down the reservedPerShare. The difference can be 1 wei at most for every
interest repayment and is negligible and doesn’t create a real unfair advantage for
non-compounding LPs.​

 25 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

L-03: maxWithdraw and maxRedeem Calculation Errors

Severity: Low​
Category: Financial Logic

Description:​
There are 3 mistakes in calculation of maxWithdraw and maxRedeem:

1.​ You need to use getAvailableForBorrowing() and not virtualBalance, and
include the user’s approved assets, as is in approveRedeemRequest

2.​ In the case of no approval needed there is a relative amount calculated that is wrong
and not what is actually available

3.​ In the case that approval is required there should also be consideration for the user’s
current balance, since that may change since the request has been done.

To fix:

In maxWithdraw, in case of !_settings.requireApprovalForWithdrawals, the
maximal withdrawal amount should be the actual allowed by withdraw, which is
Math.min(getAvailableForBorrowing(), ownerAssets)

or Math.min(getAvailableForBorrowing() + approvedAssets,
Math.min(approvedAssets, ownerAssets) in case of approval needed.

Same for maxRedeem, should be the actual allowed by redeem, which is
Math.min(_convertToShares(getAvailableForBorrowing()),
balanceOf(owner)

 or Math.min(_convertToShares(getAvailableForBorrowing()) +
request.shares, Math.min(request.shares, balanceOf(owner)) in case of
approval needed.

 26 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

L-04: Last Admin Can Renounce Role

Severity: Low​
Category: Access Control

Description:​
There’s no check in revokeRole that the account is not the last admin. This can allow for
the only admin to renounce his role, thinking it will revert if he’s the last, but actually it will
leave the protocol without an admin. Recommended to only override _revokeRole that’s
called by revokeRole and renounceRole and have the check there.

L-05: Minimum Deposit Check Inconsistency

Severity: Low​
Category: Business Logic

Description:​
deposit checks that gross assets are less than minimum deposit and mint checks that net
assets are less than minimum deposit. Both should check the same (to not allow users to
deposit less than minimal amount with deposit in case of wanting minimal net amount, or
blocking users from depositing the minimal amount with mint in case of wanting minimal
gross amount). Recommended to use gross amounts for better UX.

L-06: Deposits Allowed on Deactivated Tranche

Severity: Low​
Category: Business Logic

Description:​
Deposits/mints are still allowed on a deactivated tranche. A tranche can only be deactivated
when it’s empty and there are no deployed funds, meaning vitrualBalance != 0,
virtualDeployed != 0, but after deactivation it is still possible to call deposit or mint
and increase the tranche’s vitrualBalance. Consider adding a check that the tranche is
active to deposit and mint. It is also possible to leave it as is, since users can withdraw
the funds they deposited to a deactivated tranche, and no interest will be accrued since
there are no deployed funds and no possibility to drawdown when the tranche is deactivated.

 27 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

L-07: Checks Covering for Calculation Mistakes

Severity: Low​
Category: Code Quality

Description:​
Most uses of Math.min are redundant and are contradicting assumptions, they will cover up
in case of calculation mistakes and should be removed.

●​ Math.min(virtualBalance, _reserve.balance()); should be replaced
with virtualBalance since virtualBalance should always reflect the
_reserve.balance(), unless there’s been an emergency withdrawal.

●​ Math.min(request.shares/oldShares/sharesConsumed,
totalReservedShares[tranche]) should be replaced with
request.shares/oldShares/sharesConsumed

●​ Math.min(shares, request.shares) should be replaced with shares
●​ Math.min(value, totalSharesWithDisabledCompounding) should be

replaced with value

There are also many cases of checks in the style of A > B ? A - B : 0 where the case
that A < B should not be possible, so this check should not cover for the impossible case
(and should be replaced with simply A - B, or the expected value).
For example:

●​ if (sharesToBurn > userShares) sharesToBurn = userShares; this
should not be possible since convertToAssets(userShares -
sharesToBurn) should be the user’s initial investment. You should have a test that
checks this assumption and not a cover up in case it goes wrong, since it will allow
the user to receive more assets then shares burnt and decrease share price.

●​ totalDeployed = totalDeployed >= principalPaid ? totalDeployed
- principalPaid : 0 just use totalDeployed -= principalPaid since
totalDeployed < principalPaid is not possible. If it does happen an underflow should
catch this instead of covering up.

●​ if (reservedInterestPerShareAccumulated <= checkpoint) return;
should be changed to if (reservedInterestPerShareAccumulated ==
checkpoint) return; since reservedInterestPerShareAccumulated
cannot decrease.

 28 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

L-08: Missing Zero Interest Rate Validation

Severity: Low​
Category: Financial Logic

Description:​
Low: validateCreditLineSettings should check that interest rate per second is not
zero ((interestRate * RAY / BPS_DIVISOR) / SECONDS_PER_YEAR != 0) and
not only that interest rate is not zero. Otherwise compoundPerSecondRayBinomial
always returns the outstanding debt amount without addition, resulting in zero interest.

L-09: Rounding Favoritism for Non-Compounding LPs

Severity: Low​
Category: Financial Logic

Description:​
When interest is repaid and reservedForNonCompounding is calculated, if less than 1
wei should be reserved for non-compounding still 1 wei is reserved since the calculation is
rounded up. For example if 1 wei is repaid, and there are 99 compounding shares and 1
non-compounding, still the full 1 wei is reserved for non-compounding, even though only
0.01 should have been essentially reserved. This creates a tiny disadvantage in favor of
non-compounding LPs, which is negligible even after many attempts (1M repayments of 1
wei net each can yield an advantage of $1 at most for all non-compounding LPs: $0.99999 if
non-compounding are 0.001% of all shares). Also since the accumulated amount is reserved
for non-compounding, it is reduced from the total available for borrowing. Consider adding a
multiplier for reservedForNonCompounding, same as done for
reservedInterestPerShareAccumulated

L-10: Incorrect Utilization Rate Formula

Severity: Low​
Category: Business Logic

Description:​
utilizationRate calculation in getPoolMetrics is wrong - should be divided by
drawLimit and not totalAssets , as in getUtilizationRate())

 29 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

I-01: Checks-Effects-Interactions Pattern Not Followed

Severity: Info​
Category: Code Quality

Description:​
It’s recommended to use CEI pattern in drawdown, repay, repayInterest, repayAll
as it is best practice.

I-02: Stale Pending Proposal Issue

Severity: Info​
Category: Business Logic

Description:​
Managers can propose a creditLine/Tranche setting that requires approval, and then
propose another one that gets immediately set without requiring approval, but the previous
one will still be pending and can be approved by the underwriter even if it’s not relevant
anymore. If this is not desired behavior, reject the previous pending proposal when
approving a new setting.

I-03: Inactive Tranche Not Removed from List

Severity: Info​
Category: Code Quality

Description:​
deactivateTranche does not remove tranche from trancheList so list size stays the
same, which makes it impossible to add another tranche later (and reactivation is not
supported) in a single tranche implementation, and would make _getActiveTranches
less efficient when multi tranche is supported.

 30 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

6. Additions

Structure recommendations
These changes are recommended to simplify and improve code structure:

1.​ Use openZeppelin’s TimelockController instead of UpgradeTimelock &
UpgradeableBeaconWithTimelock

2.​ Join ProtocolConfiguration under Registry (to not have
emergencyShutdown in a separate, not mandatory contract)

3.​ Consider joining WithdrawalRegistry into Tranche for efficiency (no need for
inter-contract calls)

4.​ Consider following the YAGNI principle and removing any view functions that aren’t in
use by the ui atm.

5.​ The multi-tranche implementation is nowhere near ready, and making the current
single-tranche version cumbersome, inefficient and more prone to bugs. Consider
whether you want to keep it or remove everything regarding it for the current version
and create a new multi-tranche version later on.

Code improvements
The following changes are recommended to improve code quality, making code more
functional, efficient, readable, removing code duplication or improving UX:

1.​ Remove unused or unnecessary imports, e.g. in StructuredPool importing
AccessControlUpgradeable which is already imported by
AccessControlHelpersUpgradeable, and Reserve which is not used. Only
examples provided removed

2.​ Use InterestLogic functions without InterestState and instead use the
necessary vars directly, and update _lastInterestAccrualTime in
StructuredPool

3.​ override _grantRole and not grantRole - Resolved
4.​ revokeRole can only be called by role admins of protocol admin role, which means

only protocol admins can call it and so you don’t need to check whether the caller
had the role. Same for grantRole.

5.​ remove all basis points constants and hardcoded 10000 and use
MathUtils.BPS_DIVISOR - Resolved

6.​ In ‘grantRole’ there’s no update to _lastAddedProtocolAdmin, this is currently
keeping the first added protocol admin, if this is desired then change the var name to
be _firstAddedProtocolAdmin - Resolved

7.​ Keep one RAY constant in MathUtils - Resolved
8.​ Remove withdrawalQueue and nextWithdrawalId that are never used -

Resolved

 31 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

9.​ Use openZeppelin’s AccessControlEnumerable instead of manually counting in
AccessControlHelpers

10.​Use openZeppelin’s _checkRole in onlyProtocolAdmin, or use
onlyRole(Roles.protocolAdmin()) instead of this modifier - Resolved

11.​Instead of creating public getters for private state vars, make them public -
Resolved

12.​Change all calls of this.function() to function and change function to public,
or create an internal function called by the external function. One line functions (like
hasUnderwriter) can remain external and just use the line itself instead of calling
the function within the contract (e.g use creditLineSettings.borrower instead
of this.borrower()) - Resolved

13.​repay could return actual amount repaid for better UX - Resolved
14.​interestOwed in repay is unnecessary, can use _accumulatedInterest
15.​Remove BORROWER_ROLE that’s never used - Resolved
16.​Remove BASIS_POINTS that’s never used in ValidationLogic
17.​Use onlyRole(Roles.protocolAdmin()) modifier in

setEmergencyShutdown instead of an if-revert
18.​totalDeployed and _outstandingDebt keep track of the same value, should be

merged to one var - Resolved
19.​Update _lastInterestAccrualTime to block.timestamp in end of

_accrueInterest (updating from state.lastAccrualTime does the same) -
Resolved

20.​no need to check _underwriter != address(0) in
_payFeesOnInterestRepayment since it’s already checked in
calculateInterestFees - Resolved

21.​Create a new function _selectRepaymentTranche() for the shared code
between _executeRepayment and _selectDeploymentTranche(amount) -
Resolved

22.​Remove tranche.getVirtualBalances() and instead use
tranche.virtualDeployed since it's public (all 3 balances are public and can be
read directly)

23.​separate _protocolFees to 3 public vars (or keep and have 3 public getters)
24.​in getAvailableLiquidity() call getAvailableForBorrowing from Tranche

(if the tranche is active) and not getPoolMetrics
25.​The check for isRegisteredUnderwriter in acceptUnderwriter is redundant

since getUnderwriterFees already checks this - Resolved
26.​The check for _pendingUnderwriter == address(0) in acceptUnderwriter

is redundant since the previous check would fail. And same for check for
_underwriter != address(0) in rejectTrancheSettingsChange and
rejectCreditLineSettingsChange - Resolved

27.​Create an internal function for repayment used by repay, repayInterest and
repayAll to avoid code duplication - Resolved

 32 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

28.​Remove compoundPerSecondRay that’s never used - Resolved
29.​add if (totalOwed == 0) revert

Errors.AmountMustBeGreaterThanZero(); to repay, as in repayInterest
and repayAll (otherwise call succeeds and an event is emitted with 0 amounts) -
Resolved

30.​x2 * dtSeconds * (dtSeconds - 1)) can be saved in a var and reused in 3rd
order calculation in compoundPerSecondRayBinomial for efficiency - Resolved

31.​validateTrancheSettings on tranche’s updateSettings is redundant, same
for validateCreditLineSettings in _updateCreditLineSettings -
Resolved

32.​Remove interestPaymentInterval that’s not used anywhere
33.​_accrueInterest in _updateCreditLineSettings should only be done in

case the interest changes, and not always. - Resolved
34.​The address args passed to reject and approve in SettingsProposal can be

removed (anyway only used with msg.sender) - Resolved
35.​Reserve’s deployTo should use _transfer (with emitting the same event as

withdrawals or taking the event out of the internal function) - Resolved
36.​In ProtocolConfiguration, use openzeppelin’s onlyRole modifier instead of

if-reverts. - Resolved
37.​maximumDeposit in tranche’s settings should be named maximumTVL to avoid

confusion (and also
MAX_DEPOSIT_AMOUNT,Errors.ExceedsMaximumDeposit/InvalidMaximumD
eposit) - Resolved

38.​The override keyword is not necessary when inheriting from interface, like in
Reserve (starting solidity 0.8.8). - Resolved

39.​deposit and mint in Tranche should call a _deposit function that has the shared
code, same for withdraw and redeem - Resolved

40.​In requestWithdraw, use maxWithdraw(msg.sender) instead of
maxUserAssets

41.​proposeTrancheSettingsChange can return a boolean signaling whether the
settings have been set or they require underwriter approval, for better UX.

42.​The check for request.shares == 0 in getApprovedShares is redundant -
Resolved

43.​In _update, recipientSharesBeforeTransfer and recipientCheckpoint
are only relevant in case of sending to non-compounding LPs, so they could be
created only under if (toNonCompounding) and not be conditionally computed. -
Resolved

44.​getTotalPendingInterest and getCurrentInterestDebt are the same -
Resolved

45.​In _validateWithdrawalConstraints, the check of available cash should be
done outside of the if statement to avoid code duplication.

46.​Instead of _validateWithdrawalConstraints, use maxWithdraw or
maxRedeem

 33 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

47.​Some functions are missing event emitting (e.g. consumeApproval), make sure all
functions that should be tracked are emitting events. -Example given resolved

Notes
Some points to consider:

1.​ Capping the timeDelta to 10 years in interest calculation causes interest on debt
that hasn’t been accrued in over 10 years to stay constant, this requires protocol
admin to call accrueInterest manually before reaching 10 years.

2.​ Note that getProposalInfo (and so getPendingTrancheSettingsProposal
and getPendingCreditLineSettingsProposal) will return false for expired
for a proposal that is expired but is not pending. - Resolved

3.​ Note that tranches that are not created by the pool factory can only have withdrawal
request functionality if they are registered later in the withdrawalRegistry by a
registrar.

4.​ In approveRedeemRequest, the amount of shares approved can be more than the
amount requested.

5.​ Consider whether it is really necessary for the borrowers to be able to call
accrueInterest, since all the actions they are able to perform (drawdown,
repay/All/Interest) already accrue the interest. Borrowers can also call
getPendingInterest, getTotalDebt.
getCurrentInterestDebt/getTotalPendingInterest and
getDebtDetails if they want to know the updated status of their debt.

6.​ The project is using floating versions for openZeppelin, it’s recommended to use
fixed versions since newer versions could expose the project to new vulnerabilities or
introduce breaking changes.(for example, ReentrancyGuardUpgradeable is not
in v0.5.5 anymore). Different versions also can result in different bytecode for
different people running the code. - Resolved

7.​ Also floating solidity versions are used, consider setting fixed version since it’s good
practice to prevent that undiscovered vulnerabilities in newer compilers are not
added to the project at the time of compiling the source code. - Resolved

8.​ When changing the settings of a tranche to not require withdrawal approvals, there’s
no resetting of total reserved shares, so the reserved amount will keep being
deducted in getAvailableForBorrowing, making it stuck in the reserve and not able to
be borrowed, or withdrawn (when withdraw/redeem are fixed to use
getAvailableForBorrowing). The total reserved for withdrawals will not
decrease even if the users that have previously reserved for withdrawals will
withdraw the amounts they reserved. To fix: add a function that clears
totalReservedShares[tranche] and call it from tranche’s updateSettings. Note that
users` requests will still be registered in the withdrawal registry and will be ignored
when approvals are off, but will be relevant again if approvals are set back on again.

 34 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

9.​ Note that requestWithdraw is called with amount of assets, but the request is
created using the corresponding amount of shares. Later when the user wants to
withdraw the same amount of assets, the corresponding amount of shares is
calculated again, and if it’s bigger than the amount initially requested, the withdrawal
will revert. This can happen if interest fees are increased between withdrawal request
and withdrawal, since that would increase netPendingInterest and thus
TotalAssets will be smaller. Note that you should display to the users the current
amount that they can withdraw.

10.​Similarly, If there’s been an increase in net pending interest between
requestRedeem and redeem, the amount of assets corresponding to the shares
will increase, and the redeem will fail. This is likely to happen since every action on
the pool accrues interest, and accrual can also be triggered by borrower or manager.
For example: 2 users deposit 500 assets and get 5B shares each and the borrower
performs a drawdown of 500 assets, then one user requests to redeem his 5B shares
and the request gets approved. At this point the redeem could be performed since
the share price hasn’t changed. Then an interest of 100 assets is accrued. The
totalAssets is now 1100 and the 5B shares are worth 549.95 assets, resulting in the
redeeming of those shares to fail, since there’s only 500 assets in the tranche.

11.​Note that a deactivated tranche remains registered in the withdrawal registry until a
registrar calls revokeTranche on the withdrawal registry in a separate call.
Consider whether you want to keep the withdrawal request mechanism on a
deactivated tranche, or automatically cancel it and allow direct withdrawals by
changing the requireApprovalForWithdrawals setting and revoking the
tranche from the withdrawal registry.

12.​If funds are sent directly to the reserve, it does not update the virtual balance and so
the share price stays the same, and these extra funds can only be withdrawn by an
emergency withdrawal. Consider adding a donate function to handle donations and
record them in the tranche. Also consider adding an admin function to sweep only
extra funds over the virtual balance. - Resolved (with note)

 35 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

7. Final Recommendations

Summary
The overall functionality and reliability of the Textile lending protocol have been notably
improved with the recent version. v2.1 introduced ERC4626-compliant vault tranches with
immutable custody separation (Reserve), factory-based deployment, optional withdrawal
approvals, per-second RAY-precision interest compounding, and overall a much more robust
protocol.​
However, many vulnerabilities identified would not have existed if the codebase had
maintained a more straightforward architecture with fewer moving parts and less functionality
beyond the protocol’s core goals. Overly complex mechanisms not only introduced bugs and
inconsistencies but also made both implementation and review much harder.​
Careful planning should precede any future development work - minimizing non-essential
features and favoring simple structures directly supports better maintainability and
auditability.

Remediation & Testing
Due to the large number of issues addressed in this report, it is essential for the review
process that each change is done in a different commit, and the commit title clearly directs to
the issue it addresses.
Post-remediation testing must confirm recent changes perform as intended, without
regressions or new risks added during refactoring. All critical logic paths, especially those
newly simplified, should be subject to scenario-based and adversarial test cases to ensure
robust, resilient behavior under edge conditions and high-usage scenarios.

8. Conclusion
The audit of Textile v2.1 has revealed several critical and high-severity vulnerabilities that
must be addressed before deployment. The most significant issues involve improper
checkpoint updates for non-compounding LPs, incorrect interest calculations, and
weaknesses in governance and rounding issues. These findings expose risks to fund safety,
protocol integrity, and user trust. While the core contracts demonstrate strong adherence to
access control and upgrade safety patterns, the identified flaws require urgent remediation.
Once these issues are resolved and thoroughly tested, the Textile lending infrastructure will
be well-positioned for production use.

9. Summary - Post Remediation

 36 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

Node.Security performed a security assessment of Textile Protocol v2.1, focusing on the
core lending and ERC4626 tranche contracts responsible for deposits, withdrawals, loan
issuance, interest accrual, and reserve custody separation. The review combined manual
analysis, automated tooling, threat modeling, and scenario-based testing.

Overall, the system demonstrates strong security fundamentals, including role-based access
control, upgrade safeguards, and generally careful fund-flow handling. The audit initially
identified several issues that could have led to direct loss or misallocation of funds, primarily
around non-compounding LP checkpoint handling and interest/fee rounding edge cases,
alongside governance and operational risks.

A total of 28 findings were reported: 3 Critical, 4 High, 11 Medium, 10 Low, and 3
Informational. Textile remediated all Critical and High severity issues, and we verified the
fixes as reflected in the final statuses in this report. One Low severity issue remains Partially
resolved, and one Informational issue remains Unresolved. We recommend continuing
maintaining strong regression coverage, with emphasis on adversarial tests around
checkpoint updates, interest accrual timing, and rounding behavior to ensure long-term
robustness, and adhering to the recommendations given in this report in future updates.

Given the protocol’s financial complexity and the sensitivity of its interest and accounting
logic, we strongly recommend additional independent audits prior to mainnet deployment, as
well as ongoing reviews for future releases. We also recommend running public or private
security competitions and bug bounty programs to further stress-test the system under
adversarial conditions and uncover edge cases that may not surface during a single audit.
These measures will significantly strengthen the protocol’s long-term security posture and
resilience.

 37 / 37 ​​ ​ ​ ​ ​ ​ ​ <node/>.security

	
	
	
	Smart Contract Audit Report
	
	
	
	
	1. Introduction
	
	1.1 About Textile
	1.2 About node.security
	
	1.3 Disclaimer

	2. Report Structure
	2.1 Issue tags
	2.2 Severity levels
	
	2.3 Vulnerability Categories

	3. Scope of Work
	4. Methodology
	5. Findings
	
	
	C-01: Missing Checkpoint Update for Non-Compounding LPs Minting
	C-02: Missing Checkpoint Update for Receiving Non-Compounding LPs
	C-03: Missing Burning of Shares on Auto-Claiming
	H-01: Claiming of Interest with 0 Shares Burnt
	H-02: Non-Compounding Interest Calculation Error
	
	H-03: Inaccurate Binomial Interest Approximation
	H-04: Micro-Loan Interest Rounding to 0
	M-01: Phantom Reserved Interest on Non-Compounding Withdrawal
	
	
	
	M-02: Inactive Underwriter Causes Permanent DoS
	M-03: Missing Role Check for Protocol Admin Role Count Decrementing
	
	M-04: Fee Bypass via Micro-Repayments
	M-05: Phantom Reserved Shares from Request Update
	
	M-06: Incorrect Withdrawal Limits
	M-07: Pool Manager Can Frontrun Settings Approval
	M-08: Emergency Withdrawal Timelock Risk
	
	M-09: Emergency Withdrawal Accounting Mismatch
	M-10: Missing Pause Guards on Withdrawals
	
	M-11: Double-Counting of Accumulated Rounding Dust
	L-01: Dust Threshold Calculation Error
	L-02: Flawed Dust Accumulation Mechanism
	
	L-03: maxWithdraw and maxRedeem Calculation Errors
	
	L-04: Last Admin Can Renounce Role
	L-05: Minimum Deposit Check Inconsistency
	L-06: Deposits Allowed on Deactivated Tranche
	L-07: Checks Covering for Calculation Mistakes
	
	L-08: Missing Zero Interest Rate Validation
	L-09: Rounding Favoritism for Non-Compounding LPs
	L-10: Incorrect Utilization Rate Formula
	I-01: Checks-Effects-Interactions Pattern Not Followed
	I-02: Stale Pending Proposal Issue
	I-03: Inactive Tranche Not Removed from List

	
	6. Additions
	Structure recommendations
	Code improvements
	Notes

	7. Final Recommendations
	Summary
	Remediation & Testing

	8. Conclusion
	9. Summary - Post Remediation

